
Functional Scalability through Generative
Representations: the Evolution of Table Designs

Gregory S. Hornby

QSS Group Inc., NASA Ames Research Center
Mail Stop 269-3, Moffett Field, CA 94035-1000

hornby@email.arc.nasa.gov

Abstract

One of the main limitations for the functional scalability of automated design systems is the
representation used for encoding designs. We argue that generative representations, those
which are capable of reusing elements of the encoded design in the translation to the actual
artifact, are better suited for automated design because reuse of building blocks captures
some design dependencies and improves the ability to make large changes in design space.
To support this argument we compare a generative and non-generative representation on a
table design problem and find that designs evolved with the generative representation have
higher fitness and a more regular structure. Additionally the generative representation was
found to better capture the height dependency between table legs and also produced a wider
range of table designs.

Key words: Generative representation, Representation, Genetic algorithms, Evolutionary
design, Lindenmayer Systems (L-systems)

1 Introduction

Computer automated design systems have been used to design a variety of differ-
ent types of artifacts such as antennas (Lohn et al. , in press), flywheels, load cells
(Robinson et al. , 1999), trusses (Michalewicz et al. , 1996), robots (Lipson & Pol-
lack, 2000), and more (Bentley, 1999) (Bentley & Corne, 2001). While they have
been successful at producing simple, albeit novel artifacts, a concern with these
systems is how well their search ability will scale to more complex design spaces
(Drexler, 1989) (Pollack et al. , 2001). To improve functional scalability we can
look at those fields which regularly create large, complex artifacts. In engineering
and software development, complex artifacts are achieved by exploiting the prin-
ciples of regularity, modularity and hierarchy (Ulrich & Tung, 1991) (Huang &

Preprint submitted to Environment and Planning B 1 November 2004



Kusiak, 1998) (Meyer, 1988), which can be summarized as the hierarchical reuse
of building blocks.

While the optimization algorithm can affect the degree of reuse in a design, the
ability to create structures which reuse building blocks is limited by the ability
of the representation to encode them. For example, in optimizing the dimensions
on a blueprint, the design system can only produce designs that fall in the pre-
specified parameter space. A limitation with this type of representation is that no
modification of the search algorithm can affect the degree of reuse in resulting
designs, nor is the hierarchical construction of building blocks possible. Thus the
ability to automatically generate structures which have a reuse of subassemblies is
strongly dependent on the representation used by the design system.

The different types of representations for computer-automated design systems can
be classified by how they encode designs. First, designs can be split into parameter-
izations or open-ended representations. Parameterizations consist of a set of values
for the dimensions of a pre-defined blueprint and open-ended representations are
those in which the topology of a design is changeable. Since one of the goals of au-
tomated design systems is to achieve truly novel artifacts, we focus on open-ended
representations because it is difficult for a parameterization to achieve a type of de-
sign that was not conceived of by its creators. A fundamental distinction between
open-ended representations is whether they are non-generative or generative. With
a non-generative representation each representational element of an encoded de-
sign can map to at most one element in a designed artifact. The two subcategories
of non-generative representations are direct and indirect representations. With a
direct representation, the encoded design is a blueprint in which elements can be
added/removed in addition to changing their parameters, and with an indirect rep-
resentation there is a translation or construction process in going from the encoding
to the blueprint. A generative representation is one in which an encoded design
can reuse elements of its encoding in the translation to an actual design. The two
subcategories of generative representations are implicit and explicit. Implicit, gen-
erative representations consist of a set of rules that implicitly specify a shape, such
as through an iterative construction process similar to a cellular automata and ex-
plicit, generative representations are a procedural approach in which a design is
explicitly represented by an algorithm for constructing it.

Previously we have argued that the advantage of generative representations over
non-generative representations is that they incorporate useful bias into their struc-
ture (Hornby & Pollack, 2002). Here we refine and extend these arguments in two
ways and support these claims by comparing optimization with a generative rep-
resentation against optimization with a non-generative representation on our table
design problem (Hornby & Pollack, 2001). First we argue that optimization per-
forms better with a generative representation because generative representations are
better at capturing some types of design dependencies than non-generative repre-
sentations. We support this argument by showing that evolution with the generative

2



representation was better able to create multi-legged tables. Second we claim that
generative representations are more conducive to changes thereby improving the
ability of the search algorithm to move about in the design space. This is demon-
strated by the greater variety of styles of tables produced with the generative repre-
sentation.

The rest of the paper is organized as follows. First we present our arguments for
the advantages of generative representations followed by a review of different auto-
mated design systems. Next we describe the parts of our evolutionary design system
and then the results of our experiments in evolving table designs. Finally we close
with a discussion of our findings and a summary of this paper.

2 Argument for Generative Representations

As the complexity and number of parts in a design grows, the functional scalability
of non-generative representations is limited by their weakness in handling the in-
creasing number of design dependencies and the exponential growth in the size of
the search space. In the first case, as designs become more complex dependencies
develop between parts of a design such that changing a property of one part requires
the simultaneous change in another part of the design. For example, if the length of
a table leg is changed, then all of the other legs must be changed or the table will
become unbalanced. Second, as a design grows in the number of parts the expected
distance (in number of parts) between a starting design and the desired optimized
design increases. Conversely, changing a single part makes proportionately smaller
and smaller moves towards the desired design. One consequence of this is that as
designs increase in the number of parts, search algorithms require more steps to
find a good solution. Increasing the size of variation (by changing more parts at a
time) is not a solution because as the amount of variation is increased, the probabil-
ity of the variation being advantageous decreases. Non-generative representations
are not well suited to handling these increases in size and complexity because their
language for representing designs is static.

The advantage of generative representations comes from their ability to reuse pre-
viously discovered building blocks. First, reuse of elements of an encoded design
allows a generative representation to capture design dependencies by giving it the
ability to make coordinated changes in several parts of a design simultaneously.
For example, if all the legs of a table design are a reuse of the same compo-
nent, then changing the length of that component will change the length of all
table-legs simultaneously. Secondly, navigation of large design spaces is improved
through the ability to manipulate assemblies of components as units. For exam-
ple, if adding/removing an assembly of m parts would make a design better, this
would require the manipulation of m elements of a design encoded with a non-
generative representation. With a generative representation the ability to reuse pre-

3



viously discovered assemblies of parts enables the addition/deletion of groups of
parts through the addition/deletion/modification of symbols which represent groups
of parts. Here the ability to hierarchically create and reuse building blocks acts as
a scaling of knowledge through the scaling of the unit of variation.

3 Review of Automated Design Representations

To assist in our review of design representations, we first define some of their prop-
erties. Previously we used the metaphor of design representations as a kind of com-
puter programming language to define the following features of design representa-
tions (Hornby & Pollack, 2002):

• Combination: The ability to hierarchically create more powerful expressions
from simpler ones. While the subroutines of GLib (Angeline & Pollack, 1994)
and genetic programming (GP) (Koza, 1992) allow explicit combinations of ex-
pressions, combination is not fully enabled by mere adjacency or proximity in
the strings utilized by typical representations in genetic algorithms.
• Control-flow: All programming languages have some form of control of exe-

cution which permits the conditional and repetitive use of structures. Two types
of control-flow are conditionals and iterative expressions. Conditionals can be
implemented with an if-statement, as in GP, or a rule which governs the next
state in a cellular automata. Iteration is a looping ability, such as the for-loop
in C/C++ programs.
• Abstraction: This consists of the ability to encapsulate a group of expressions

in the language and label them, enabling them to be manipulated/referenced as a
unit, and the ability to pass parameters to procedures. An example of abstraction
is the automatically defined functions (ADFs) of GP.

An open-ended representation is generative if it has reuse (which can be through
either iteration, procedure labels, or both), otherwise it is non-generative. In the rest
of this section we review different design representations for both non-generative
and generative representations.

The two classes of non-generative representations are direct and indirect. Direct,
non-generative representations typically use a fixed-size data structure for speci-
fying the existence of material at a given location, such as with two-dimensional
arrays (Kane & Schoenauer, 1996) (Baron et al. , 1999). Indirect, non-generative
representations tend to be variable length assembly procedures which specify the
assembly of an object (Bentley, 1996) (Funes & Pollack, 1998). An additional layer
of indirection is used in those representations in which an object is encoded as a
derivation tree for a grammar, with the resulting assembly procedure specifying the
assembly of the artifact (Roston, 1994).

4



One type of grammar for design is Stiny’s shape grammars (Stiny, 1980). The gram-
matical rules of a shape grammar specify a transformation from one shape to an-
other. Optimization with shape grammars consists of producing a derivation tree
for the grammar, with a typical approach using simulated annealing to iteratively
modify a design (Shea et al. , 1997) (Agarwal & Cagan, 1998). While automated
design using shape grammars is an example of an indirect representation (since no
element of the derivation tree is used more than once) it could be extended to a gen-
erative representation by allowing new rules to be added to the grammar through
the combination of existing rules.

Most implicit, generative representations consist of a starting shape and a set of
rules for iteratively transforming the design. One of the earliest such examples is
Frazer’s work using shape transformation rules to rotate/stretch/grow/shear a start-
ing shape (Frazer, 1995). Similar to Frazer’s work is that of de Garis’ augmented
cellular automata (CA) (de Garis, 1992), in which each cell in the CA maintains
the number of neighbor cells in the ON state in each of the four directions, North,
East, West and South. More standard CAs are used in (Bentley & Kumar, 1999)
for creating two-dimensional tessellating tile patterns and for creating patterns of
cells in an isospatial grid (Bonabeau et al. , 2000). Rather than working in a grid,
Shape Feature Generating Process (SFGP) grows designs by optimizing rules for
the division of dots (metaphors for a cell) on the surface of a shape (Taura et al. ,
1998) (Taura & Nagasaka, 1999). After development is complete, the final shape
is formed by creating an outer surface using the density of dots to determine the
distance from the initial shape. A more biologically based model is Eggenberger’s
method of growing three-dimensional shapes from an artificial genome using an
artificial chemistry (Eggenberger, 1997). Designs are encoded in a linear string
which consists of regulatory genes, for switching other genes in the genome, and
structural genes, which encode for specific chemicals.

Explicit, generative representations consist of an algorithm for constructing a de-
sign and are typically implemented as a type of grammar. With Todd and Latham’s
Mutator, structures are defined by an expression in a geometrical construction lan-
guage that specifies the shape, shape transformations, number of repetitions of a
shape and angles between shapes. Initially only the evolution of parameters was
possible (Todd & Latham, 1992), and then in later work the ability to change
the grammar was added (Todd & Latham, 1999). Broughton, Coates and Jack-
son (Broughton et al. , 1997) (Coates et al. , 1999) use a Lindenmayer system
(L-system) as the representation for evolving shapes in an isospatial grid and the
Emergent Design group has used L-systems with attractors/repellers for evolving
curved surfaces in a three-dimensional space (Testa et al. , 2000) (Hemberg et al.
, 2001). Rosenman (Rosenman, 1996) (Rosenman, 1997) describes a hierarchical
grammar for building two-dimensional, grid-based, floor plans which uses multiple
evolutionary runs to evolve different levels of the design. Instead of constructing a
final design shape from a number of simpler shapes, the work of Husbands et. al.
(Husbands et al. , 1996) and Nishino et. al. (Nishino et al. , 2001) combines su-

5



Table 1
Properties of the different design representations.

Combination Control Flow Abstraction

System Iter. Cond. Labels Param.

Direct Non-generative

(Baron et al. , 1999) no no no no no

(Kane & Schoenauer, 1995) no no no no no

Shape grammar systems no no no no no

Indirect Non-generative

(Bentley, 1996) yes no no no no

(Bentley & Kumar, 1999), explicit yes no no no no

(Funes & Pollack, 1998) yes no no no no

Genetic Design (Roston, 1994) yes no no no no

GENRE, non-generative (section 4.3) yes no no no no

Implicit Generative

(Bentley & Kumar, 1999), implicit no yes yes no no

(Bonabeau et al. , 2000) no yes yes no no

(de Garis, 1992) no yes yes no no

(Eggenberger, 1997) no yes yes no yes

(Frazer, 1995) no yes yes no no

(Taura et al. , 1998) no yes yes no no

Explicit Generative

(Broughton et al. , 1997) yes no no yes no

Emergent Design Group yes no no yes no

GENRE, generative (section 4.2) yes yes yes yes yes

Mutator (Todd & Latham, 1992) yes yes no no no

(Rosenman, 1997) yes no no yes no

Superquadrics yes no no yes no

perquadric modeling primitives (Barr, 1981) with constructive solid geometry as a
kind of genetic program for transforming a starting shape.

6



The evolutionary design systems described in this section are listed in table 1. In
this table the representations are grouped by category and for each representation it
is stated whether or not it has the property of combination, iteration, conditionals,
labels or parameters.

4 Evolutionary Design System

The computer-automated design system used to create designs is called GENRE
and it consists of the design constructor, the compiler for the generative represen-
tation, the fitness function for evaluating designs and the evolutionary algorithm.
The evolutionary algorithm evolves encoded designs using the fitness function to
score designs. To allow for comparing non-generative and generative representa-
tions, GENRE has both a non-generative and a generative representation for encod-
ing designs. The non-generative representation encodes designs indirectly using a
sequence of construction commands, called an assembly procedure, for building
a design with the design constructor. The generative representation is based on
Lindenmayer systems (Lindenmayer, 1968), which are compiled into an assembly
procedure that is used to build the design. By using an indirect, non-generative rep-
resentation and an explicit, generative representation, these two representations can
be applied to different design substrates by changing only the set of construction
commands and the design constructor. The following subsections describe each of
these parts.

4.1 Design Constructor

The design constructor starts with a single cube with which it creates a more com-
plex object by executing the instructions of an assembly procedure. Commands in
the command set act on the local state – which consists of the current position and
orientation – and are listed in table 2. The commands ‘[’ and ‘]’ push and pop
the current state to and from a stack. Forward adds cubes in the positive X direc-
tion of the local state and back adds cubes in the negative X direction. In addition
to adding cubes forward and back also change the current position. The com-
mands left/right/up/down/clockwise/counter-clockwise rotate
the current heading about the appropriate axis in units of 90◦.

The images in figure 1 show intermediate stages in the construction of an object
from the assembly procedure: forward(2) right(1) forward(1) up(1)
forward(3). Initially there is a single cube in the design space, figure 1.a. Af-
ter executing the command forward(2), two cubes are added to the first, fig-
ure 1.b. The image in figure 1.c shows the design after executing right(1)
forward(1), which turns the current orientation 90◦ to the right and then adds a

7



Table 2
Design language for constructing tables.

Command Description

[ ] Push/pop state to stack.

forward(n) Move and add cubes in the local, positive X direction n
units.

back(n) Move and add cubes in the local, negative X direction n
units.

clockwise(n) Rotate local heading n× 90◦ about the X axis.

counter-clockwise(n) Rotate local heading n×−90◦ about the X axis.

left(n) Rotate local heading n× 90◦ about the Y axis.

right(n) Rotate local heading n×−90◦ about the Y axis.

up(n) Rotate local heading n× 90◦ about the Z axis.

down(n) Rotate local heading n×−90◦ about the Z axis.

cube in the current forward direction. After executing up(1) forward(3), the
final object is shown in figure 1.d. In building an object, if the constructor is asked
to place a cube where one already exists, it ignores the existing cube but updates
its location as if it had placed this cube and then continues executing the assembly
procedure.

4.2 Generative Representation

The generative representation for each design is based on a grammatical rewrit-
ing system called Lindenmayer Systems (L-systems) (Lindenmayer, 1968). The
class of L-systems used as the encoding for designs in this work is parametric L-
systems. Production rules for a parametric L-system consist of a rule-head, which
is the symbol to be replaced, followed by a number of condition-successor pairs.
The condition is a boolean expression on the parameters to the production-rule,
and the successor consists of a sequence of characters that replace the rule-head.
Rule-head symbols are re-written by testing each of their conditions sequentially,
and replacing the rule-head symbol with the successor of the first condition that suc-
ceeds. Thus the parametric L-system has the properties of combination, abstraction,
naming of compound procedures, formal parameters to the procedures, and condi-
tionals. To handle iteration, a looping ability is added that replicates the symbols
enclosed with parenthesis similar to for loops in computer programs: { block }(n)
repeats the enclosed block of symbols n times. For example {abc}(3) translates to,
abcabcabc.

8



(a) (b)

(c) (d)

Fig. 1. Steps in building an object.

Compiling an L-system into an assembly procedure consists of starting with a sin-
gle symbol and then iteratively applying the production rules in parallel to all com-
mands in an assembly procedure. The following is an example design encoded with
the generative representation and the construction language of table 2. It consists
of two productions with each production containing one condition-successor pair:

P0(n0) : n0 > 1.0→ [ P1(n0 ∗ 1.5) ] up(1) forward(3) down(1) P0(n0 − 1)

P1(n0) : n0 > 1.0→ { [ forward(n0) ] left(1) }(4)

Compiling this design encoding starting with the symbol P0(4) produces the fol-
lowing sequence of strings,

9



1. P0(4)

2. [ P1(6) ] up(1) forward(3) down(1) P0(3)

3. [ { [ forward(6) ] left(1) }(4) ] up(1) forward(3) down(1) [ P1(4.5) ] up(1)
forward(3) down(1) P0(2)

4. [ { [ forward(6) ] left(1) }(4) ] up(1) forward(3) down(1) [ { [ forward(4.5)
] left(1) }(4) ] up(1) forward(3) down(1) [ P1(3) ] up(1) forward(3) down(1)
P0(1)

5. [ { [ forward(6) ] left(1) }(4) ] up(1) forward(3) down(1) [ { [ forward(4.5)
] left(1) }(4) ] up(1) forward(3) down(1) [ { [ forward(3) ] left(1) }(4) ]
up(1) forward(3) down(1)

6. [ [ forward(6) ] left(1) [ forward(6) ] left(1) [ forward(6) ] left(1) [ for-
ward(6) ] left(1) ] up(1) forward(3) down(1) [ [ forward(4.5) ] left(1) [ for-
ward(4.5) ] left(1) [ forward(4.5) ] left(1) [ forward(4.5) ] left(1) ] up(1) for-
ward(3) down(1) [ [ forward(3) ] left(1) [ forward(3) ] left(1) [ forward(3)
] left(1) [ forward(3) ] left(1) ] up(1) forward(3) down(1) forward(3)

This final string is a sequence of construction commands which is then used by the
design constructor to build an object.

4.3 Non-generative Representation

To show the advantages of a generative representation it must be compared against
a non-generative representation. For the non-generative representation each indi-
vidual in the population is an assembly procedure which specifies how to construct
the design. We implement this assembly procedure as a degenerate, parametric L-
system which has only a single rule and no iterative loops or abstraction. Imple-
menting the non-generative representation in the same way as the generative repre-
sentation allows us to use the same evolutionary algorithm and variation operators
so that the only difference between evolutionary runs with the two systems is the
ability to hierarchically reuse elements of encoded designs.

4.4 Evolutionary Algorithm

An evolutionary algorithm is a population-based, search algorithm used in opti-
mization. Search operates by creating an initial population of candidate designs,
called individuals, and then iteratively selecting better individuals to reproduce and
make new designs until the search is done. The evolutionary algorithm and varia-
tion operators used by GENRE are described in detail in (Hornby, 2003), here we
give an overview of the system.

10



The evolutionary algorithm used to evolve designs is the canonical generational
EA with specialized variation operators. Each individual in the initial population is
an L-system with a random set of production rules. After all individuals have been
evaluated, better individuals are selected as parents to create a new population. New
individuals are created through applying mutation or recombination (chosen with
equal probability) to individuals selected as parents. Mutation takes a single indi-
vidual as a parent, makes a copy of it and then makes a small random change to this
child copy. Some of the changes that can occur are inserting a small sequence of
random commands, deleting a small sequence of commands, changing the param-
eters to a command, changing the parameters of a conditional, and encapsulating
a sequence of commands into its own production rule. Recombination takes two
individuals as parents, makes a copy of the first individual and then inserts a small
part of the second parent into this child. Examples of some of the insertions that can
be done are replacing a subsequence of commands in the child with a subsequence
of commands from the second parent, replacing one of the child’s successors with
one from the second parent, and replacing a complete condition-successor pair in
the child with one from the second parent. This process of evaluation, selection,
and reproduction is then repeated for a fixed number of generations.

To reduce the frequency of variations that do not result in a change in the resulting
design, data is kept for compiled L-systems on which production rules and suc-
cessors were used, as well as the value range for each parameter. This compilation
history is used so that variation operators are then applied only to those produc-
tion rules that were used in compiling and so that mutated of condition values stay
within the value range of the parameter being compared against.

4.5 Fitness Function

Once an assembly procedure is executed the resulting structure is evaluated by
a pre-specified fitness function. First, the design simulator determines whether or
not the object is balanced or will fall over. Objects that are not balanced are given a
fitness of zero, otherwise an object is given a score based on several easy to compute
attributes of a table. These attributes are the height at which it holds objects, the
amount of surface area available, how stable it is, and the amount of material it
is made of. Height is simply the number of cubes above the ground and surface
area is the number of cubes at the maximum height. Rather than measuring actual
structural integrity, a rough measure of stability is calculated by using the volume
of the table from summing the area at each layer of the table. The measurement
of amount of material used includes only those cubes not on the surface and is
necessary since maximizing height, surface area and stability typically result in
table designs that are solid volumes.

fheight = the height of the highest cube, Ymax.

11



fsurface = the number of cubes at Ymax.

fstability =
Ymax∑

y=0

farea(y)

farea(y) = area in the convex hull at height y.
fexcess = number of cubes not on the surface.

For these experiments we combine these measures into a single function,

fitness = fheight × fsurface × fstability/fexcess (1)

5 Results

To compare the generative representation against the non-generative representa-
tion the evolutionary algorithm was configured to run for two thousand generations
using a population size of two hundred. In this section we present results compar-
ing fitness and evolvability of designs produced with both representations and also
show tables constructed from evolved designs.

0

1e+06

2e+06

3e+06

4e+06

5e+06

0 250 500 750 1000 1250 1500 1750 2000

av
er

ag
e 

fit
ne

ss

generation

generative
non-generative

0

1000

2000

3000

4000

5000

6000

0 250 500 750 1000 1250 1500 1750 2000

av
er

ag
e 

le
ng

th

generation

generative - L-sys
generative - assembly proc.

non-generative

(a) (b)

Fig. 2. Graphs comparing (a) average fitness and (b) average length of the design encodings
and assembly procedure.

The graph in figure 2.a contains a comparison of the fitness of the best individ-
uals evolved with the non-generative representation against the best individuals
evolved with the generative representation, averaged over fifty trials. With the non-
generative representation, fitness improved rapidly over the first 300 generations,
then quickly leveled off, improving by less than 25% over the last 1700 generations.
Fitness increased faster with the generative representation, and the rate of increase
in fitness did not slow as quickly as with the non-generative representation. The
final results are an average best fitness of 1826158 with the non-generative repre-
sentation and 4938144 with the generative representation.

12



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. The four best tables evolved with: (a)-(d), the non-generative representation; and
(e)-(h), the generative representation.

13



1

10

100

1000

10000

100000

1e+06

-300000 0 300000 600000

nu
m

be
r

fitness change

Non-Generative Representation (1 mutation)

1

10

100

1000

10000

100000

1e+06

-300000 0 300000 600000

nu
m

be
r

fitness change

Generative Representation (1 mutation)

(a) (b)

Fig. 4. Graph of the number of offspring (y-axis, log scale) that had a given fitness differ-
ential (x-axis) from their parent.

0

0.0008

0.0016

0.0024

0.0032

0.004

0.0048

0.0056

0.0064

0.0072

0.008

0 500 1000 1500 2000 2500 3000

pr
ob

. o
f i

m
pr

ov
em

en
t

command difference between assembly procedures

Non-Generative Representation

0

0.0008

0.0016

0.0024

0.0032

0.004

0.0048

0.0056

0.0064

0.0072

0.008

0 500 1000 1500 2000 2500 3000

pr
ob

. o
f i

m
pr

ov
em

en
t

command difference between assembly procedures

Generative Representation

(a) (b)

Fig. 5. Probability of success (child is more fit than parent) comparison between
non-generative and generative representations, for ranges 1-50, 51-100, 101-150, ...
1951-2000

In addition to having higher fitness, tables evolved with the generative represen-
tation show some symmetries and regularities whereas tables evolved with the
non-generative representation tended to be irregular, figure 3. These regularities are
most likely a result of the generative representation’s ability to reuse elements. The
average amount of reuse with the generative representation can be calculated from
the average length of the encoded design and the average length of the assembly
procedure it compiles to. From the graph in figure 2.b it can be seen that these val-
ues are approximately 310 and 5100 respectively, which leads to an average reuse
of just over sixteen elements.

To determine if the generative representation produces encodings that are more
conducive to evolution we compare the success rate of the mutation operator. The
graphs in figure 4 plot the number of offspring that fall at a given fitness differential
from the parent design. These graphs show that the vast majority of mutations to
a design produced little or no change in fitness. While most of the remaining mu-
tations produced a negative change in fitness with both representations, there are

14



(a) (b)

(c) (d)

Fig. 6. Evolved tables shown both in simulation (left) and reality (right).

more positive changes to fitness with the generative representation, especially large
positive changes. A plot of the success rate under mutation (a child has higher fit-
ness than its parent) is shown in the graphs in figure 5. On this graph it can be seen
that mutations that produce a large change in the assembly procedure have a greater
rate of success with the generative representation than with the non-generative rep-
resentation. These two sets of graphs show that designs encoded with the generative
representation are more evolvable than those encoded with the non-generative rep-
resentation.

Previous work has shown the successful transfer from design to reality of static
objects (Funes & Pollack, 1998) and robots (Lipson & Pollack, 2000). Similarly,
designs produced with this system have also been successfully transferred to the
real world using rapid-prototyping equipment, figure 6.

15



6 Discussion

In section 2 it was argued that reusing elements of an encoded design for multiple
parts in the actual design improves evolvability by capturing design dependencies
and by improving the ability to make large changes in design space. This section
consists of two parts that give evidence supporting both of these claims.

6.1 Design Dependencies

0

10

20

30

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

av
er

ag
e 

he
ig

ht

generation

generative
non-generative

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

av
er

ag
e 

st
ab

ili
ty

generation

generative
non-generative

(a) (b)

Fig. 7. Graphs of (a) average stability and (b) average height over the course of evolution.

One way to determine which representation better captures design dependencies is
to compare the designs that are evolved with them. With table designs, the main
dependency is with the table legs: in maximizing the height of a table, the optimal
length of each leg is dependent on the lengths of the other table legs. First, it can be
seen from the graph in figure 7.a that evolution with the generative representation
is both faster at producing high tables and also produces higher overall tables than
evolution with the non-generative representation. Next, the low stability score of
tables evolved with the non-generative representation (figure 7.b) along with the
images in figure 3 suggest that these tables typically have only a single leg stretch-
ing from table top to the ground whereas the high stability score and images in
figure 3 suggest that tables evolved with the generative representation have mul-
tiple table legs. That evolution with the generative representation is better able to
produce multi-legged tables suports our argument that generative representations
are better able to capture and manipulate design dependencies.

6.2 Coverage of the Search Space

Better capturing dependencies and reusable building blocks which can be easily
added/removed enables variation operators to move through the design space in

16



(a) Original. (b) Shorter.

(c) Three corners (d) More surface cubes.

Fig. 8. Table mutants.

more meaningful ways. For an example we use the table in figure 8.a, for which
the generative representation is listed in appendix A. The height of the table legs
is encoded in the first successor of P8 and changing the values of either back()
command will change the height of the table, figure 8.b. Similarly, changing the
iteration counter in the second successor of production rule P0 from }(4) to }(3)
changes the number of corners and legs on the table from four to three, figure 8.c.
Finally, the number of cubes on the surface of the table can be changed by changing
the parameter values of any of the last three back() commands in the second suc-
cessor of P6. In this case, further evolution changed the production rules P6 and
P8 to,

17



P6(n0, n1) (n1>1)→ [back(5) up(5) back(n0) left(1) back(5) back(5) back(5)
back(4) ]

(n0>2)→ [back(5) up(5) back(n0) back(5) left(1) down(5) up(5)
back(5) back(5) back(5) back(4) ]

(n1>0)→ [back(5) up(5) left(1) back(n0) back(5) down(5) up(1)
back(5) back(5) back(5) back(4) ]

P8(n0, n1) (n0>0)→ P8(n0/5,n1+1) [back(4) back(4) P8(n1-2,n0-5) ]

(n1>-2)→ [P8(n0/4,n1+1) back(5) back(4) P8(2-5,3-5) back(4)
back(5) P6(n1-n0,n0+n1) ]

(n0>-1)→ counter-clockwise(1) down(3) down(n0)

with the resulting table shown in figure 8.d. All three of these example show how
through the process of evolution the generative representation has evolved an en-
coding with which it is easy for the mutation operator to make large, meaningful
movements in the design space.

With a non-generative representation, all of those changes to the table in figure 8.a
would require the simultaneous change of multiple symbols in the encoding. Some
of these changes must be done simultaneously for the resulting design to be vi-
able – changing the height of only one leg of the table can result in a significant
loss of fitness – and so these changes are not evolvable with a non-generative rep-
resentation. Others, such as the number of cubes on the surface, are viable with
a series of single-cube changes. Yet, in general this could result in a significantly
slower search speed in comparison with a single change to a table encoded with a
generative representation.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

0 2500 5000 7500 10000

fit
ne

ss

number of parts

Non-Generative Representation for Table Design

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

0 2500 5000 7500 10000

fit
ne

ss

number of parts

Generative Representation for Table Design

(a) (b)

Fig. 9. Plots of number of parts versus fitness of the best individual from each trial: (a)
non-generative representation; and (b) generative representation.

That this improved ability make large, meaningful changes to a design is result-
ing in an increase in this size of the design space that is explored can be seen by

18



(a) (b)

(c) (d)

(e) (f)

Fig. 10. Other tables evolved using: (a)-(b) the non-generative representation; and (c)-(f)
the generative representation.

19



the designs evolved with the two representations. The graphs in figure 9 are plots
of the number of parts in the design against their fitness with the non-generative
and generative representations. This graph shows that search with the generative
representation tested designs with a wider range of parts and fitness than with the
non-generative representation. Using variations of the fitness function described in
section 4.5, examples of the different types of tables that have been evolved with the
non-generative and generative representations are shown in figure 10. In general,
tables evolved with the non-generative representation are similarly irregular as the
ones in figure 3 whereas tables evolved with the the generative representation are
more varied in how the table-top is supported above the ground. These designs show
that search with the generative representation is exploring a larger, more interesting
part of the table design space than is search with the non-generative representation.

7 Conclusion

The complexity of designs achievable with computer-automated design systems
is strongly limited by their representation. Here we defined several classes of de-
sign representations and then argued that the generative representations are a better
method for encoding designs than non-generative representations. To support these
arguments we compared a generative and non-generative representation on a table
design problem and found that designs evolved with the generative representation
have higher fitness and a more regular structure. In addition, we argued that gener-
ative representations are better able to capture and manipulate design dependencies
and supported this by showing that evolution tended to evolve multi-legged tales
with the generative representation and single-legged tables with the non-generative
representation. Finally, we claimed that a generative representation enables mean-
ingful, large scale design changes and gave examples of this with an evolved table
design as well as showed that evolution with the generative representation produced
a wider range of table styles. The next step in automated design is in producing de-
sign representations that can hierarchically create and reuse assemblies of parts in
ever more powerful ways.

Acknowledgements

This research was supported in part by the Defense Advanced Research Projects
Administration (DARPA) Grant, DASG60-99-1-0004.

20



References

Agarwal, M., & Cagan, J. 1998. The Language of Coffee Makers. Environment
and Planning B: Planning and Design, 25(2), 205–226.

Angeline, P., & Pollack, J. B. 1994. Coevolving High-Level Representations. Pages
55–71 of: Langton, C. (ed), Proceedings of the Third Workshop on Artificial
Life. Reading, MA: Addison-Wesley.

Baron, P., Tuson, A., & Fisher, R. 1999. A Voxel-Based Representation for Evolu-
tionary Shape Optimisation. Journal of Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, Special Issue on Evolutionary Design,
13(3), 145–156.

Barr, A. 1981. Superquadrics and angle preserving transformations. IEEE Com-
puter Graphics and Applications, 1(1), 11–23.

Bentley, P., & Kumar, S. 1999. Three Ways to Grow Designs: A Comparison of
Embryogenies of an Evolutionary Design Problem. Pages 35–43 of: Banzhaf,
W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., & Smith,
R. E. (eds), Genetic and Evolutionary Computation Conference. Morgan
Kaufmann.

Bentley, P. J. 1996. Generic Evolutionary Design of Solid Objects Using a Genetic
Algorithm. Ph.D. thesis, Dept. of Engineering, University of Huddersfield.

Bentley, P. J. (ed). 1999. Evolutionary Design by Computers. San Francisco: Mor-
gan Kaufmann.

Bentley, P. J., & Corne, D. W. (eds). 2001. Creative Evolutionary Systems. San
Francisco: Morgan Kaufmann.

Bonabeau, E., Gurin, S., Snyers, D., Kuntz, P., & Theraulaz, G. 2000. Three-
dimensional architectures grown by simple ‘stigmergic’ agents. BioSystems,
56(1), 13–32.

Broughton, T., Tan, A., & Coates, P. S. 1997. The Use of Genetic Programming
in Exploring 3d Design Worlds. Pages 885–917 of: Junge, R. (ed), CAAD
Futures 1997. Kluwer Academic.

Coates, P., Broughton, T., & Jackson, H. 1999. Exploring Three-Dimensional De-
sign Worlds using Lindenmayer Systems and Genetic Programming. Chap.
14 of: Bentley, P. J. (ed), Evolutionary Design by Computers. San Francisco:
Morgan Kaufmann.

de Garis, H. 1992. Artificial Embryology : The Genetic Programming of an Ar-
tificial Embryo. Chap. Ch. 14 of: Soucek, Branko, & the IRIS Group (eds),
Dynamic, Genetic and Chaotic Programming. Wiley.

Drexler, K. E. 1989. Biological and Nanomechanical Systems. Pages 501–519 of:
Langton, C.G. (ed), Artificial Life. Addison Wesley.

Eggenberger, P. 1997. Evolving Morphologies of Simulated 3d Organisms Based
on Differential Gene Expression. Pages 440–448 of: Husbands, P., & Harvey,
I. (eds), Proc. of the 4rth European Conf. on Artificial Life. Cambridge: MIT
Press.

Frazer, J. 1995. An Evolutionary Architecture. Architectural Association Publica-

21



tions.
Funes, P., & Pollack, J. B. 1998. Evolutionary Body Building: Adaptive physical

designs for robots. Artificial Life, 4(4), 337–357.
Hemberg, M., O’Reilly, U.-M., & Nordin, P. 2001. GENR8: A Design Tool for

Surface Generation. In: Late Breaking paper at the Genetic and Evolutionary
Computation Conference. AAAI.

Hornby, G. S. 2003. Generative Representations for Evolutionary Design Automa-
tion. Ph.D. thesis, Michtom School of Computer Science, Brandeis University,
Waltham, MA.

Hornby, G. S., & Pollack, J. B. 2001. The Advantages of Generative Grammatical
Encodings for Physical Design. Pages 600–607 of: Congress on Evolutionary
Computation. IEEE Press.

Hornby, G. S., & Pollack, J. B. 2002. Creating High-level Components with a Gen-
erative Representation for Body-Brain Evolution. Artificial Life, 8(3), 223–
246.

Huang, C. C., & Kusiak, A. 1998. Modularity in design of products and systems.
IEEE Transactions on Systems, Man, and Cybernetics, Part A, 28(1), 66–77.

Husbands, P., Germy, G., McIlhagga, M., & Ives, R. 1996. Two Applications of
Genetic Algorithms to Component Design. Pages 50–61 of: Fogarty, T. (ed),
Evolutionary Computing. LNCS 1143. Springer-Verlag.

Kane, C., & Schoenauer, M. 1995. Genetic Operators for Two-Dimentional Shape
Optimization. Pages 355–369 of: Alliot, J.-M., Lutton, E., Ronald, E., Schoe-
nauer, M., & Snyers, D. (eds), Artificiale Evolution - EA95. Springer-Verlag.

Kane, C., & Schoenauer, M. 1996. Topological Optimum Design. Control and
Cybernetics, 25(5), 1059–1088.

Koza, J. R. 1992. Genetic Programming: on the programming of computers by
means of natural selection. Cambridge, Mass.: MIT Press.

Lindenmayer, A. 1968. Mathematical Models for Cellular Interaction in Develop-
ment. Parts I and II. Journal of Theoretical Biology, 18, 280–299 and 300–315.

Lipson, H., & Pollack, J. B. 2000. Automatic Design and Manufacture of Robotic
Lifeforms. Nature, 406, 974–978.

Lohn, J. D., Hornby, G. S., & Linden, D. S. in press. An Evolved Antenna for
Deployment on NASA’s Space Technology 5 Mission. Chap. 18 of: O’Reilly,
U.-M., Riolo, R. L., Yu, T., & Worzel, B. (eds), Genetic Programming Theory
and Practice II. Kluwer.

Meyer, B. 1988. Object-oriented Software Construction. New York: Prentice Hall.
Michalewicz, Z., Dasgupta, D., Riche, R. G. Le, & Schoenauer, M. 1996. Evo-

lutionary Algorithms for Constrained Engineering Problems. Computers and
Industrial Engineering Journal, 30(2), 851–870.

Nishino, H., Takagi, H., Cho, S.-B., & Utsumiya, K. 2001. A 3D Modeling Sys-
tem for Creative Design. Pages 479–486 of: 15th Intl. Conf. on Information
Networking. Beppu, Japan: IEEE.

Pollack, J. B., Lipson, H., Hornby, G., & Funes, P. 2001. Three Generations of
Automatically Designed Robots. Artificial Life, 7(3), 215–223.

Robinson, G., El-Beltagy, M., & Keane, A. 1999. Optimization in Mechanical

22



Design. Chap. 6, pages 147–165 of: Bentley, P. J. (ed), Evolutionary Design
by Computers. San Francisco: Morgan Kaufmann.

Rosenman, M. 1996. A growth model for form generation using a hierarchical
evolutionary approach. Microcomputer in Civil Engineering, 11, 161–172.

Rosenman, M. A. 1997. The generation of form using an evolutionary approach.
Pages 69–85 of: Dasgupta, D., & Michalewicz, Z. (eds), Evolutionary Algo-
rithms in Engineering Applications. Southampton: Springer-Verlag.

Roston, G. P. 1994 (December). A Genetic Methodology for Configuration Design.
Ph.D. thesis, Dept. of Mechanical Engineering, Carnegie Mellon University.

Shea, K., Cagan, J., & Fenves, S. J. 1997. A Shape Annealing Approach to Optimal
Truss Design With Dynamic Grouping of Members. Journal of Mechanical
Design, 119(September), 388–394.

Stiny, G. 1980. Introduction to Shape and Shape Grammars. Environment and
Planning B: Planning and Design, 7, 343–351.

Taura, T., & Nagasaka, I. 1999. Adative-growth-type 3D Geometric Representation
for Spatial Design. Journal of Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 13(3), 171–184.

Taura, T., Nagasaka, I., & Yamagishi, A. 1998. An application of evolutionary
programming to shape design. Computer-Aided Design, 30(1), 29–35.

Testa, P., O’Reilly, U.-M., Kangas, M., & Kilian, A. 2000. MoSS: Morphogenetic
Surface Structure - A Software Tool for Design Exploration. Pages 71–80 of:
Proceedings of Greenwich 2000: Digital Creativity Symposium. University of
Greenwich.

Todd, S., & Latham, W. 1992. Evolutionary Art and Computers. Academic Press.
Todd, S., & Latham, W. 1999. The Mutation and Growth of Art by Computers.

Chap. 9, pages 221–250 of: Bentley, P. J. (ed), Evolutionary Design by Com-
puters. San Francisco: Morgan Kaufmann.

Ulrich, K., & Tung, K. 1991. Fundamentals of product modularity. Issues in De-
sign/Manufacture Integration - 1991 American Society of Mechanical Engi-
neers, Design Engineering Division (Publication) DE, 39, 73–79.

A Generative Representation for an Evolved Table

The following L-system is the generative representation for the table in figure 8.a:

P0(n0, n1) (n1 >10)→ P11(n0/4,2) down(1) {P17(3,n1/2) P12(n1+n0,n0+n1)
P3(1,n1-n0) }(4)

(n1>3)→ P11(n0/4,2) down(1) {P17(3,n1/2) P18(n1+n0,n0+n1)
P3(1,n1-n0) }(4)

(n1>0)→ [P16(2,n0+2) ]

23



P2(n0, n1) (n0>5)→ P7(n1/2,n0+2) back(1)

(n0>5)→ P7(n1/2,n0+2) back(1)

(n0>0)→ [left(4) P12(3,4) ]

P3(n0, n1) (n1>2)→ P16(4,n0-n1) P16(4,n0-n1) P16(4,n0-2) P16(4,n0-n1)

(n1>2)→ P16(4,n0-n1) P16(4,n0-n1) P16(4,n0-n1) P16(4,n0-n1)

(n0>0)→ down(1) {clockwise(n1) forward(3) }(5)

P6(n0, n1) (n1>1)→ [back(5) left(1) back(5) down(1) up(1) back(5) back(5)
back(5) ]

(n0>1)→ [back(5) up(1) back(n0) left(1) back(n0) down(5) up(1)
back(5) left(n1) back(5) down(1) ]

(n1>0)→ [back(5) left(1) back(5) down(1) up(1) back(5) back(5)
back(5) ]

P7(n0, n1) (n0>-1)→ [clockwise(1) clockwise(1) left(1) clockwise(1) clock-
wise(5) right(1) clockwise(1) ] down(1)

(n1>1)→ [clockwise(1) clockwise(1) left(1) clockwise(1) clock-
wise(5) clockwise(1) clockwise(1) ] down(1)

(n0>0)→ [clockwise(1) left(1) ] right(2) up(2) P18(n1-5,n1+4)

P8(n0, n1) (n0>0)→ P8(n0/4,n1+1) [back(4) back(4) P8(n1-2,n0-5) ]

(n1>-2)→ [P8(n0/4,n1+1) back(5) P8(n1-5,n0-5) back(4) back(4)
back(4) P6(n1-n0,n0+n1) ]

(n0>0)→ [back(4) P8(n1-2,n0-5) ] P6(n1-n0,n0+n1)

P9(n0, n1) (n1>3)→ P7(3-3,n0+n1) clockwise(1) P8(n1-n0,n1+1)

(n1>2)→ P7(3-3,n0+n1) clockwise(1) P8(n1-n0,n1+1)

(n1>0)→ forward(1) P16(n1-1,n0-n1)

P11(n0, n1) (n1>4)→ [P19(4,5) ]

(n1>-10)→ right(1)

(n1>0)→

24



P12(n0, n1) (n1>4)→ back(1) up(1)

(n1>4)→ back(1) up(1)

(n1>0)→ counter-clockwise(4)

P14(n0, n1) (n1>3)→ P11(n1,n0/n1)

(n0>10)→ P2(n1/3,n1+n0) P9(n1,n0/n1)

(n1>0)→ P9(n1,n0/n1)

P16(n0, n1) (n1>22)→
(n1>5)→
(n1>0)→ [P19(n0/2,n1-n0) back(1) forward(3) ] clockwise(2)

P3(5,n1-5)

P17(n0, n1) (n1>3)→ up(n1) back(2) back(4) back(n0) back(3) back(3) back(5)

(n1>3)→ up(n1) back(4) back(2) back(2) back(2) back(3) back(5)

(n1>0)→ up(2) back(2)

P18(n0, n1) (n1>3)→ back(n1) P14(n1-3,3) left(1) left(1) right(1) right(1)

(n1>3)→ back(n1) P14(n1-2,3) left(1) [counter-clockwise(1) ]
right(1)

(n0>0)→ [P13(5,n1/4) right(1) ] right(1)

This L-system is started with P0(4, 10) and run for 17 iterations, after which it
produces an assembly procedure comprising of several thousand commands. The
sequence of commands starts as follows:

right(1) down(1) up(5) back(2) back(4) back(3) back(3) back(3) back(5) back(14)
[left(4) counter-clockwise(4) ] [ clockwise(1) clockwise(1) left(1) clockwise(1)
clockwise(5) right(1) clockwise(1) ] down(1) clockwise(1) [back(4) back(4) ] [
back(4) back(4) [back(4) back(4) ] ] [back(4) back(4) [back(4) back(4) ] [ back(4)
back(4) [back(5) back(4) back(4) back(4) ] ] ] [back(4) back(4) [back(4) back(4) ]
[back(4) back(4) ] [back(4) back(4) [ [back(5) back(4) back(4) back(4) ] back(5)
[back(4) back(4) ] back(4) back(4) back(4) [ back(5) up(1) back(13.7) left(1) back(13.7)
down(5) up(1) back(5) left(-0.3) back(5) down(1) ] ] ] ] [back(4) back(4) [back(4)
back(4) ] [back(4) back(4) ] [back(4) back(4) ] . . .

The entire assembly procedure is listed in appendix A of (Hornby, 2003).

25


